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Outline 

• Presentation Objective: Review several smart 

materials and potential applications to fuzing and 

ordnance 

• Smart material overview 

• Piezoelectrics 
– Damage sensing, power harvesting 

• Shape Memory/Superelastic Alloys 
– IM, self-healing, safe & arm applications 

• Magneto/Electro-rheological Fluid 
– Suspension, safe & arm  

• Conclusions 
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Smart Material Classification 

• Materials converting energy/fields into other 
(especially mechanical) 

• Many definitions, other names and related areas 
– Intelligent materials, multifunctional materials 
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Piezoceramics 
Piezopolymers 
Electrostrictors 
Electrorheological 
fluids 

Magnetostrictors 
Magnetorheological 
fluids 

Shape memory 
alloys, ceramics, 
polymers 

Light activated gel 
(Becker and Glad 
2000) 
Laser driven flyer 
plates 

Ionic polymers 

• Smart structures use these materials to provide integrated 
sensing, actuation or control and structural integrity 
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Why Consider Smart Materials? 

• Increased functionality 
– Monitoring functions 

• As munitions age, increased likelihood of malfunctions.  

• Sensing solutions can help predict individual or subpopulation 

reliability 

– Environment sensing 

• Both during storage and at use 

– Adaptivity 

• Shape morphing and control  

• Self repair 

• Reduced size 
– Higher energy density 

– Smaller munitions 

– Smarter munitions  

• Fit more into the provided space 

– Integrated fuzing guidance and targeting 
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Piezoelectric Background 

• Converse effect 
– Generates mechanical force/ displacement from 

electric field 
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• Generally high force/ low stroke 

• Direct effect 
– Generates electric charge with applied force 



Piezoelectric Material Background 

• Piezoelectric effect found in crystals, ceramics 

polymers and biological materials 

• Common piezoceramics lead zirconate titanate 

(PZT), Barium titanate, lead metaniobate (PMN) 

• PZT – high piezoelectric and dielectric constants 
• Many formulations of PZT exist – Hard, soft  

• DOD-STD-1376  - Originally defined standard 

material types for Hydrophones 
– DOD or Navy Type I- VI  

– Hard or soft, Curie point, Self heating susceptibility (high 

electric drive potential) 

• Manufacturers generally report material 

properties 
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Material Modeling 

• 3D constitutive equations 

7 

• Simplified to one dimension 
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Typical Material Constants 

PZT 5H (Navy Type VI) 

d31 (m/V) d33 (m/V) Elastic 
modulus 
(N/m2) 

Density 
(kg/m3) 

εT
33 

(F/m) 
Curie 
temp 
(°C) 

-320x10-

12 
650x10-12 6x1010 7800 3.36x10-8 230 
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d33 ~ 2x d31 

 Since E is scaled by distance (V/m) field applied 

across thin dimension 



Common Configurations  

• Patch 
– Generates /responds to plate and 

beam bending  and 
tensile/compressive waves 

– Unimorph and bimorph 
configurations 

• Stack 
– Takes advantage of d33 coefficient 

• MFC 
– Uses d33 coefficient for in-plane 

motion 
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Stack actuators from APC International  

www.americanpiezo.com 

MFC actuator Patch actuator 



Piezo Sensing/Actuation Examples  
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•Atomic force 
microscope 
position control 

•Speakers 

•Buzzers 

•Anything 
“ultrasonic” 
(humidifiers, 
cleaners) 

•Depth 
finders/SONAR Se

n
si

n
g

/ 
ac

tu
at

io
n

 

•Structural 
monitoring 

•Vibration 
control 
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Current Fuzing Applications 

• Dozens of piezoelectric fuze patents 

• Rocket Propelled Grenade 
– Acceleration at launch strains piezoelectric fuze that ignites 

primer.  



Piezo-Based SHM 

• Utilizes high frequency vibrations to detect local changes in 
materials 
– Stiffness changes due to cracking 

– Increases in damping 

– Interface changes such as loosening of a joint. 

• Electrical impedance is directly related to mechanical 
impedance 

• Wave propagation approach can also be utilized  
– Measure reflections, attenuation, delay due to damage 
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Matrix cracking in 
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Impedance response 
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Shape Memory Alloy 

• NiTiNOL developed at Naval 
Ordnance laboratory 

• Shape memory effect : result of 
change in crystal structure 
– Martensite at low temperature- twinned 

crystal structure 

– Austenite at high temperature-  body 
centered cubic 

– Reverts to original undeformed shape 
when heated beyond transition 
temperature 

– One-way and two-way effects 

• Stress can also cause transition – 
Superelastic effect 

• 6-8% strain 

• Relatively slow response time 
– Speed increased for low volume (faster 

temperature change) 
12 

High 

Temperature 

Cubic Structure 

Low Temperature 

Monoclinic 

Structure 

Low Temperature 

Deformed 

Structure 

Cool 

Load 

Heat 



Temperature Transition 

• Width and temperature of hysteresis can be 

controlled 

• State dependent on path to current temperature 

13 

%
 A

u
s
te

n
it
e
 

0 

100 

%
 M

a
rt

e
n
s
it
e
 

100 

0 

As 

Af 

Mf 

Ms 



Superelastic Behavior 

• Stress-strain curve depends on material 

temperature relative to transition temperature 
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SMA Fuzing Examples 

• Damping 

• S&A actuation 
– Goldstein and Weiner 

– Investigated effects of prestrain on 
transition temperature 

• Activation temperature up to 150 C  

• Non-pyrotechnic separation 
systems 

• IM compliance 
– Marchand et al. - Mine Clearance System 

rocket-towed linear demolition charge 
makeover 

– SMA proposed for release rocket motor 
case at both ends and actuate thermal 
igniter for Slow-Cook mitigation 

• Manufacturing 
– Removable fixturing 
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Reusable SMA Projectile Translation 

• Recoil, launch stress can be 

reduced by translating 

projectile a small distance 

forward prior to launch 

• Typically accomplished by 

secondary charge  
– Not reusable if launch is aborted 

• SMA spring suggested for 

Cased Telescoped 

Ammunition 

• Manole et al. 2004 US patent 

6,688233B1 
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SMA spring 



Self-Healing Bolted Joint 

• Proof-of-concept testing 

• Heated with external heater or resistively 
– Competing for electrical and thermal isolation and high stiffness 

• Joint tightness monitored with PZT 

• SMA ring sized to provide tension to compensate 

for reduced torque tightening 
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Magnetorheological (MR) Fluids 

• Change viscosity with magnetic field 

• Response times on order of 10 ms 

• Viscoelastic solid below yield stress when field 
applied 
– Field dependent modulus 

• Newtonian fluid when field is off 
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Possible Fuze Application 

• Research on self-regulation of delay arming time 

of MR fluid fuze (Hu et al. 2010, Jiaxing University and 

Nanjing University of Science and Technology) 

– Permanent magnet used to keep MR fluid as a solid during 

storage 

– Setback causes magnet to separate and rod impacts a piezo 

energy harvester 

– Energy harvester charges capacitor 

– Capacitor discharges into coil to regulate MR fluid viscosity 

– MR fluid viscosity controls flow through an orifice to control arm 

time 

19 



MR Fluid Braking 

• Morris et al., US Patent 7354017, 2008, 

Projectile trajectory control system 

• Used to control de-spin of a projectile with 

braked rotating fins. 
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Summary and Conclusions 

• Smart Materials offer alternative sensing and 

actuation systems 
– Piezoelectric materials provide both sensing and actuation at 

high speed and forces, but low displacement 

– SMA provides high displacement and forces, but low speed 

– MR fluid provides fast response time and relatively high forces 

 

• Numerous unexplored applications for these 

materials exist including in the fuzing and 

ordnance environment 
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